Maximal sets of Hamilton cycles in complete multipartite graphs II

نویسندگان

  • Sasha Logan Jarrell
  • Christopher A. Rodger
چکیده

A set S of edge-disjoint hamilton cycles in a graph T is said to be maximal if the hamilton cycles in S form a subgraph of T such that T −E(S) has no hamilton cycle. The set of integers m for which a graph T contains a maximal set of m edge-disjoint hamilton cycles has previously been determined whenever T is a complete graph, a complete bipartite graph, and in many cases when T is a complete multipartite graph. In this paper we solve all but one of the remaining cases when T is a complete multipartite graph. The proof technique could also be used to simplify the proofs of previous results. ∗Department of Mathematics and Statistics, 124-C Wall, Coastal Carolina University, Conway, South Carolina, 29528, USA, [email protected] †Department of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, Alabama, 36849, USA [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal sets of hamilton cycles in complete multipartite graphs

A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has

متن کامل

Maximal sets of hamilton cycles in K2p-F

A set S of edge-disjoint hamilton cycles in a graph T is said to be maximal if the hamilton cycles in S form a subgraph of T such that T − E(S) has no hamilton cycle. The spectrum of a graph T is the set of integers m such that T contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has previously been determined for all complete graphs, all complete bipartite graphs, and man...

متن کامل

Decompositions of Complete Multipartite Graphs into Gregarious 6-cycles Using Complete Differences

The complete multipartite graph Kn(2t) having n partite sets of size 2t, with n ≥ 6 and t ≥ 1, is shown to have a decomposition into gregarious 6-cycles, that is, the cycles which have at most one vertex from any particular partite set. Complete sets of differences of numbers in Zn are used to produce starter cycles and obtain other cycles by rotating the cycles around the n-gon of the partite ...

متن کامل

Fair Hamilton Decompositions of Complete Multipartite Graphs

A fair hamilton decomposition of the complete multipartite graph G is a set of hamilton cycles in G whose edges partition the edges of G in such a way that, for each pair of parts and for each pair of hamilton cycles H1 and H2, the difference in the number of edges in H1 and H2 joining vertices in these two parts is at most one. In this paper we completely settle the existence of such decomposi...

متن کامل

Maximal Sets of Factors

In this paper, a survey is presented of results concerning maximal sets of factors in graphs. These factors at times satisfy additional structural constraints, such as being connected, or such as requiring each component of each factor to be isomorphic. Each set of factors occurs in some natural family of graphs, including complete graphs and complete multipartite graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2007